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Abstract: An approach is described for joint interleaved recording, real-time processing, and analysis of
NMR data sets. The method employs multidimensional decomposition to find common information in a set
of conventional triple-resonance spectra recorded in the nonlinear sampling mode, and builds a model of
hyperdimensional (HD) spectrum. While preserving sensitivity per unit of measurement time and allowing
for maximal spectral resolution, the approach reduces data collection time on average by 2 orders of
magnitude compared to the conventional method. The 7-10 dimensional HD spectrum, which is represented
as a set of deconvoluted 1D vectors, is easy to handle and amenable for automated analysis. The method
is exemplified by automated assignment for two protein systems of low and high spectral complexity:
ubiquitin (globular, 8 kDa) and úcyt (naturally disordered, 13 kDa). The collection and backbone assignment
of the data sets are achieved in real time after approximately 1 and 10 h, respectively. The approach
removes the most critical time bottlenecks in data acquisition and analysis. Thus, it can significantly increase
the value of NMR spectroscopy in structural biology, for example, in high-throughput structural genomics
applications.

Introduction

Over the past two decades, NMR spectroscopy has evolved
as one of the prime techniques for protein structure determi-
nation at the atomic level and for characterizing proteins,
protein-ligand complexes, or nucleic acids. X-ray crystal-
lography and NMR are two biophysical methods for determining
protein structures1 that have proven to be the most useful in
structural genomics, which aims to ascribe a three-dimensional
protein structure to each gene product of the human and other
genomes. Because these methods rely on distinctly different
physical principles and experimental procedures, crystallography
and NMR are highly complementary for high-throughput (HTP)
structure determination; both are important to ultimate project
success.2-4 When used to determine structure in the pipeline
with highly automated and parallelized target selection and

protein expression, contemporary NMR often represents a major
time bottleneck.4 Weeks of data collection using an expensive
NMR spectrometer are required for every protein target.
Measurements are followed by data analysis, which is at least
as lengthy and is usually performed manually. The NMR
community5,6 has devoted significant attention to the need to
save spectrometer time and to automate the analysis steps.

With modern sensitive NMR spectrometer hardware, the
duration of a multidimensional experiment is determined by the
time needed for one measurement and the number of measure-
ments. Both factors are targeted in ongoing efforts to speed up
the experiments. Recording individual data points can be
accelerated by reducing the delay between consecutive measure-
ments7-12 or by parallel acquisition as in single scan NMR.13
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Novel sampling schemes reduce the number of data points
without losing essential information. In particular, in G-matrix
Fourier transform (GFT)14 and projection reconstruction,15,16

only specific spectral projections of lower dimensionality are
used to obtain information present in complete multidimensional
spectra. As an alternative, nonlinear sampling (NLS), which is
also referred to as nonuniform orsparse sampling, allows
reconstruction of a complete spectrum from only a small number
of optimally selected experimental data points.17 By taking into
account prior information about signal properties, a NLS
schedule can be optimized for maximum spectral sensitivity and
resolution.17 The approach requires nontraditional signal pro-
cessing schemes such as nonlinear Fourier transform,18-20

maximum entropy,21-23 or multidimensional decomposition
(MDD).24-27

In addition to rapid data collection, novel sampling techniques
offer a framework for highly efficient automated spectra analysis
by making possible spectroscopy of high dimensionality. For
example, to ultimately simplify the problem of signal assign-
ments, one may choose an experiment that contains only one
signal, whose position in multidimensional space encodes
frequencies in all spin systems throughout the protein amino
acid sequence. Although the hundreds of dimensions that would
be needed for such an experiment are out of reach for
contemporary NMR methodology, clear progress in this area
has been recently demonstrated. Five- and six-dimensional
experiments for backbone resonance assignment that make use
of reduced dimensionality and the GFT approach to sample the
huge spectral space during a reasonable measurement time were
reported.10,28Although carefully and optimally designed, these
experiments represent a limit for physical transfer of the
magnetization through the long chain of spin-spin interactions
and thus are often seen as an unaffordable compromise when
sensitivity is in demand.28 It is generally accepted that extending
NMR spectroscopy beyond four dimensions is impractical. An
alternative approach to high-dimensional NMR is found in the
concept of hyperdimensional (HD) spectroscopy.29,30According
to its original definition, the HD technique derives all possible
direct and indirect correlation spectra from a limited set of low-

dimensional measurements. In other words, a spectrum of high
dimensionality or any of its projections is obtained using a suite
of sensitive 2D to 4D experiments. Generally, HD spectroscopy
opens an avenue for obtaining spectra of any dimensionality
and for the optimization of data acquisition.

Here, we demonstrate that a model of HD spectrum can be
built using MDD of a standard set of triple-resonance NMR
experiments, which are rapidly recorded using NLS. The
spectrum represented by a number of HD MDD components is
amenable to fully automated real-time backbone assignments
performed concurrently with data collection.

Theory

HD Spectroscopy. HD spectroscopy was introduced by
Kupce and Freeman.29 In the following section, we point to an
important distinction between conventional multidimensional
spectroscopy and HD spectroscopy. The former is implemented
in a pulse sequence, thereby directly exploiting physical correla-
tions between the spin coherences in a single NMR experiment.
HD spectroscopy is essentially a joint recording and processing
of spectral sets in the frame of a single mathematical model.

An HD spectrum shows both direct and indirect correlations
within a spin system. The indirect correlations are inferred from
direct correlations using a set of low-dimensional experiments,
which are essentially the orthogonal projections of the HD
spectrum. For example, a pair of conventional experiments with
direct correlationsA f B andA f C can be used to construct
a hyperspectrum with additional indirect correlationB f C.
The idea of obtaining indirect correlations from direct ones is
reminiscent of the “covariance spectroscopy” of Zhang and
Brüschweiler.31

It should be emphasized that, in general, a hyperspectrum
may contain less information than a genuine spectrum of the
same dimensionality. The latter, however, is typically not
possible to obtain due to the practical limitations and thus cannot
be used for comparison. In the above example, the difference
appears if signalA overlaps with another signalA′, which, in
turn, has direct correlations withB′ andC′. The overlap may
result in spurious correlationsB f C′ andB′ f C that appear
in the HD spectrum but not in the spectrum exploiting direct
coherence transferB f C. In other words, while a conventional
N-dimensional spectrum resolves signals overlapped inN-1
dimensions, resolution in the hyperspectrum corresponds to that
in the original set of low-dimensional spectra. Currently, protein
HD spectroscopy is based on sets of conventional 3D and 4D
experiments, where the problem of overlap is largely alleviated.
Indeed, these experiments have been used so far to obtain signal
assignments for most of the protein systems studied by NMR,
including disordered and large proteins,32-36 which are the cases
with the most crowded spectra. The HD approach is general
and can be used with sensitive 2-4D spectra as well as with
5-6Ds10,37 that are optimized for ultimate resolution. This
approach does not require developing new, specialized NMR
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pulse sequences. The experiments in a set, however, should be
performed in compatible way to ensure equality in the common
parts. In particular, to ensure good matches between the line
shapes from different experiments, the spectral width, the carrier
positions, and the number of time increments should be the same
for the corresponding common dimensions. It is also helpful to
run the experiments in the interleaved fashion to avoid differ-
ences in the sample condition between the experiments in the
set. Another reason for the interleaved acquisition relates to the
incremental data collection with real-time analysis, which is used
in this work and described below.

Accumulation of half a dozen 3-4D spectra using conven-
tional uniform sampling is time-consuming. Previously, the mea-
surement time was reduced in HD spectroscopy by employing
the projection reconstruction technique29 or suite of fast band-
selective excitation short-transient (BEST)-type experiments.12

In this work, full information from the experiments is rapidly
harvested using optimal nonlinear sampling.

The MDD Model of the HD Spectrum. The model of
multidimensional decomposition (MDD) assumes that all es-
sential features of anM-dimensional matrix can be described
as the sum of a small number of tensor products of one-
dimensional vectors. MDD has been used in a variety of fields
as a tool for data analysis and signal processing since the early
1970s under various names, such as parallel factor analysis,
canonical decomposition, and three-way decomposition.38 Previ-
ously, the MDD model was successfully used for the recon-
struction of individual multidimensional experiments recorded
using either nonlinear sampling24-26,39 or projections.40 In this
work, we generalize the approach for an HD spectrumH, where
data are collected as a suite of experimentsS of lower
dimensionalities. Unlike a single experiment, in which dimen-
sionality is limited by the efficiencies of all magnetization
transfer steps, the HD spectrum has no limits on the number of
dimensions.

When applied to NMR spectra, the MDD can be formulated
as follows. Given a spectrumH with sizes Nm of its M
dimensions (m ) 1...M) and elementsHn1,n2,...,nM, find scalar
numbersâa and normalized vectorsâFm, with elementsâFm-
(nm) (nm ) 1...Nm), such that the following norm becomes
minimal:41

Here, the symbolX denotes the tensor product operation. In
the case of NLS, only a fraction of the elements inH is
measured, and the matrixG, which contains elementsgn1,n2,...,nM

∈ [0 or 1], indicates the absence or presence of a particular
data point. Accordingly, the symbol• describes the element-
wise multiplication of matrices. The last term represents
Tikhonov regularization with the parameterλ, which can be
used to improve the convergence of the MDD algorithm. The
regularization also ensures stability of the minimization algo-

rithm in case of a very sparseG matrix. Equation 1 with sparse
matrix G is most useful for describing a nonlinearly sampled
NMR signal in the time domain. It is worth noting that an
alternative equation was recently published, which describes the
spectrum represented by frequency domain projections.40 The
summation indexâ runs over the number of components used
for decomposition. The range of this index depends on the type
of spectrum. For example, for the 3D HNCO spectrum, it is
roughly equal to the number of protein backbone amide groups.

In the time domain, the experimentsSR, which are enumerated
by indexR, can be considered as orthogonal cross sections of
the full HD spectrumH. Assuming that all the experiments have
the same sensitivity, eq 1 for theM-dimensional HD spectrum
can be solved using allSR measurements simultaneously, with
matrix G taking care of the lower dimensionalities and NLS in
individual spectra. In the real case, we need to account for
different efficiencies of magnetization transfers and signal
intensities in the set of experiments, that is, to find scaling factors
for the components in the individual experiments. In the frame
of the MDD model, this is done most naturally using eq 1, with
an additional dimensionfor spectra weighting. Thus, an
M-dimensional hyperspectrum can be constructed from an
appropriate set of low-dimensional spectra using (M + 1)-
dimensional decomposition. Below, we describe a simplified
practical algorithm for building the model of HD spectra and
illustrate it using examples of real-time experiments.

The HD Algorithm. Equation 1 gives a general theoretical
framework for constructing a HD spectrum from a number of
experiments using a joint MDD model. In this work, we use a
simplified two-stage algorithm that is derived from eq 1. The
algorithm is equivalent to the direct application of eq 1 with
the assumption that experiments in the set share several
dimensions (amide HN and N) and one of the experiments
(HNCO in this work) significantly exceeds all others in
sensitivity. In the general case, for example, if some experiments
do not have HN dimensions, we could envisage alternative
multistage protocols or direct use of eq 1.

The most reliable, albeit computationally demanding, algo-
rithm for solving the minimization problem defined by eq 1 is
based on alternating least-squares (ALS) iterations.39,42 In this
algorithm, at each iteration, amplitudesâa and shapesâFm along
one of the dimensions are optimized simultaneously for all
components, while the shapes for other dimensions are fixed.
This naturally allows fixation of the shapes for selected
dimensions, which is achieved by skipping updates along these
dimensions. On the other hand, when updating a particular
dimension of a HD spectrum, the (M + 1)-dimensional matrix
G selects only measurements from the experiments with the
corresponding dimension. Thus, Figure 1 exemplifies a special
case where each experiment from the suite contributes only one
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|G • [H - Σâ(
âaâF1 X âF2 ...X âFM)]|2 + λΣâ(

âa)2 (1)

Figure 1. Construction of the HD spectrum from six 3D experiments. The
amide nitrogen and proton shapes are the same for all 3Ds and serve to
bind HD components over the experiments. Each experiment contributes
one indirect shape that constitutes a dimension in the HD spectrum.

Hyperdimensional NMR Spectroscopy with NLS A R T I C L E S

J. AM. CHEM. SOC. 9 VOL. 130, NO. 12, 2008 3929



additional dimension, while the remaining dimensions are shared
by all experiments. In this case, fixing shapes of ther-shared
dimensions splits the (M + 1)-dimensional decomposition
problem intoM-r independent MDD problems for individual
(r + 1)-dimensional experiments:

where the MDD shapesâF i (i ) 1...r) are the same in all spectra
and fixed, whileâFR denotes a shape which is specific for a
particular 3D experimentR; GR is a subset ofG corresponding
to the NLS schedule of the experiment; andâaR is the amplitude
adjusted for the individual experiment and thus corresponds to
the shape of theweightingdimension. The common shapesâF i

are obtained in a decomposition of the most sensitivebase
experiment.

In this work, without losing generality of the consideration
and merely as an example, we focus on a set of eight triple-
resonance experiments, typically used in structural studies of
proteins. The first six experiments are used for backbone
assignment (Figure 1) including HNCO, HN(co)CA, CBCA-
(co)HN, HN(ca)CO, and two intraresidue experiments iHNCA
and iHN(ca)CB,43 while the last two serve to assign side chain
protons and calculate spatial structure: H(cco)NH and15N
NOESY-HSQC.

For residuei and its preceding residuei - 1, HD spectrum
H correlates frequencies of any of the backbone nuclei HN

i, Ni,
CA

i, CB
i, CA

i-1, CB
i-1, CO

i, and CO
i-1 plus protons relayed by

the last two experiments.H has up toM ) 10 dimensions and
is constructed from eight 3D experiments sharingr ) 2
dimensions, namely of amide proton and nitrogen. Accordingly,
the shapesâFHN, âFN, âFCA, âFCB, âFCO-1, andâFCA-1 contain
a single peak;âFCOCO-1 and âFCA-1CB-1 contain two peaks
corresponding to frequencies of CO

i, CO
i-1 and CA

i-1, CB
i-1,

respectively;âFTOCSY-1 andâFNOESY represent groups of peaks
from H(cco)NH and15N NOESY-HSQC dimensions.

To solve the problem posed by eq 2, we first determine the
amide proton and nitrogen shapes from the base HNCO
experiment, which is the most sensitive in the set. These shapes
are then considered as known and not adjusted in the MDD
calculations for the remaining five experiments. Fixation of
shapesâFNH(t2) andâFHN(ω3) during the decomposition reduces
the number of adjustable parameters in the MDD model and
thus saves additional spectrometer time relative to the original
R-MDD analysis.27 Total saving of the measurement time
relative to the commonly used uniform sampling is given by
factorφ (derivation of the equation in the Supporting Informa-
tion)

whereNR andNNH are the adjusted sizes of carbon and fixed
nitrogen indirect spectral dimensions, respectively;Np is number
of amides in a protein; andf ) 0.3 is the empiric factor, which
is the same for all experiments.

Skipping updates for two of the three dimensions improves
the convergence of minimization in eq 2 and dramatically speeds

up the calculations. With several shapes defined, the algorithm
effectively performs filtering of the input data, that is, largely
disregards spectral artifacts that may appear in the areas beyond
the defined HN and NH positions. However, the most important
aspect is that the two fixed shapes tag each HD component by
associating it with a given HN-NH pair throughout the set of
3D experiments and thus collect all peaks of a spin system into
one component.

Figure 2 exemplifies the output of the HD calculations (a
MDD model of HD spectrum). It is completely defined by the
set of line shapes for all dimensions (Figure 2a-i). From this
representation, any region or projection of HD spectrumH can
be reconstructed. Figure 2j, for example, depicts the reconstruc-
tion of a 2D projection, which correlatesR-carbons of two
consecutive residues in the amino acid sequence of ubiquitin.
The 2D to 4D projections can be input to existing programs for
spectral analysis. On the other hand, the 1D representation of
the HD spectrum is natural for the method and suitable for signal
identification. In this way, we directly obtain a peak list for the
whole HD spectrum without the need to identify signals in the
individual 3D spectra or in higher/lower dimensional projections
and without needing to match peaks from different data sets.
Straightforward and robust peak-picking in 1D vectors and
inherent peak grouping bynD components simplify the analysis
and are beneficial for the automation of signal assignments.

Experimental Section

NMR Data Measurement and Processing.Table 1 details the
performed NMR experiments. The proteins were uniformly13C and
15N labeled: ubiquitin44 and 13 kDa naturally disorderedúcyt (cyto-
plasmic domain of the T cell receptorú subunit).45-49 úcyt was expressed
and purified as previously described.47 The samples were in 10% D2O/
90% H2O: ubiquitin, 1.7 mM, pH 4.6; andúcyt, 0.5 mM, 20 mM
phosphate, pH 6.7. The NMR experiments on ubiquitin (úcyt) were
performed at 25°C (15 °C) on Varian spectrometers with Larmor
frequencies of 800 MHz (900 MHz) equipped with room temperature
(cold) pulsed-field gradient triple resonance probes. The sets of triple-
resonance 3D experiments were performed using standard gradient
sensitivity enhanced pulse sequences from the BioPack library (Varian
Inc.) in the NLS mode (Table S1 in the Supporting Information).
HNCO, HN(co)CA, CBCA(co)NH, and “intra” iHNCA and iHN(ca)-
CB spectra43 were recorded for both proteins. In addition, forúcyt, a
HN(ca)CO experiment was performed. All experiments were recorded
in an interleaved order as a sequence of incremental steps,50 except for
HNCO and1H-15N NOESY-HSQC and H(cco)NH spectra for ubiquitin,
which were not included in the real-time scheme.

At each step, every experiment from the suite has a short run with
a newly generated NLS schedule. The schedules at different steps follow
the same probability density distribution and differ only in the value
of the seed for the random number generator. The distributions are
calculated using the matched acquisition principle17,23,26,39,51 with
parameters presented in Table S1 in the Supporting Information. By
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|GR • [SR - Σâ(
âaR

âF1 X âF2... X âFr X âFR)]|2 +

λΣâ(
âaR)2 (2)

φ ) fNp log2 (NR)/(4NRNNH) (3)
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matching probability distribution to the signal decay in the time domain,
the NLS schedules are optimized for better sensitivity. The number of
entries in the schedule does not change with each step but ranges from
8 to 34 for individual experiments (see Table 1). The numbers define
the time resolution of the incremental procedure (Figures 3-5) and
partitioning between different experiments in the set. The steps were

short enough to closely monitor the completion of the assignment and
the stability of the solution around and after this point.

Real-Time Assignment with Targeted Acquisition (TA).The main
principles of TA are described in our previous publication.50 In short,
TA is stepwise incremental data acquisition using a NLS schedule,
which is performed concurrently with MDD spectra processing and
automated analysis. The approach provides time optimization in
reaching predefined project targets. While originally TA was applied
to a single experiment, here the concept is extended to incremental
collection and real-time processing of several experiments. Since each

(51) Hyberts, S. G.; Heffron, G. J.; Tarragona, N. G.; Solanky, K.; Edmonds,
K. A.; Luithardt, H.; Fejzo, J.; Chorev, M.; Aktas, H.; Colson, K.; Falchuk,
K. H.; Halperin, J. A.; Wagner, G.J. Am. Chem. Soc.2007, 129 (16),
5108-5116.

Figure 2. Example of MDD HD analysis for ubiquitin: (a-i) HD component (R72); the 1D line shapes are from the 3D experiments (a-c) HNCO, (d)
HN(co)CA, (e) iHNCA, (f) iHN(ca)CB, (g) CBCA(co)HN, (h) H(cco)NH, and (i)15N NOESY-HSQC; (j) 2D CA(i)-CA(i-1) projection from the HD spectrum;
the correlations are labeled with ubiquitin sequence assignments; data of step 30.

Table 1. Experiments on the Proteins and Results of Spectral Data Analysis

ubiquitin
(8 kDa, globular)

úcyt

(13 kDa, disordered)

NMR spectra
1H spectrometer frequency,1H MHz 800 900
number of HN signals detected (sequence)a 70 (72) 116 (107)
3D experimentsb HNCOc, HN(co)CA, HNCOc, HN(co)CA,

CBCA(co)NH, iHNCA, CBCA(co)NH, iHNCA,
iHN(ca)CB, iHN(ca)CB, HN(ca)CO
(NOESY-HSQC, H(cco)NH)d

Calculations & analysis
measurement time per step, h 0.144 1.21
average CPU timee per one step, h 0.1 0.2
MDD, peak-picking, assignment 0.01, 0.08, 0.01 0.07, 0.10, 0.01
time points “90% peaks”f

TA step number -c, 2, 3, 2, 4 -c, 3, 5, 2, 2, 7
φ experiment, % -, 0.4, 1.0, 0.5, 1.3 -, 0.25, 0.8, 0.8, 0.5, 2.7
φ theory (eq 3), % -, 0.8, 1.5, 0.7, 0.7 -, 0.3, 0.7, 1.0, 0.5, 3.0

a The number of amide signals observed in the amide area of 3D HNCO. The figures in parenthesis are the numbers of backbone HN groups in the amino
acid sequences. For ubiquitin, the signals of M1, E24, and G53 were not identified; forúcyt, G1 and S2 were not identified, and there were about a dozen
minors.b The list of experiment names. For each protein, parameters for individual spectra are given as comma separated lists with the order corresponding
to the names on the list of experiments.c The HNCO spectra were recorded in one step as 5% NLS data prior to recording the other spectra, and they are
excluded from the TA procedure and time calculations.d H(cco)NH and NOESY-HSQC experiments for ubiquitin were recorded (25% NLS) after the
backbone set; they were not used for the automated assignment, and thus, they are not counted in the measurement and processing timing for the assignment.
The parameters for these experiments are given in parentheses.e The computation times are on a Linux workstation with one Dual Core Opteron processor
(2 × 2.0 GHz).f The point during acquisition when at least 90% of the peaks are obtained. The numbers are given in each spectrum: the step number in
the TA schedule, experimental and theoretically predictedφ, and values as fractions of the full data matrix.
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experiment carries an essential part of information for the real-time
assignment procedure, the experiments must be recorded in parallel,
that is, in the interleaved way. Direct outputs of the procedure are
spectral quality scores for each step. In this work, the scores reflect
the number of detected peaks as well as completeness and precision of
the assignments. In HTP applications, the experiments can be stopped
when the scores reach target values, for example, 95% of assignment,
thus dealing with the problem of incomplete and redundant data
collection. In this methodological work, however, the experiments
continued far beyond the time allocation needed for the assignments.
This was done to demonstrate the clear plateau for the scores and to
confirm that no new information was obtained after a certain point.
This point defines the amount of measurement time needed to reach
the targets and is reported in this study for each of the proteins as a
formal time needed to obtain signal assignments. The timing can serve
as a measure of efficiency for different protocols of data collection
and analysis. Thus, here the TA scores on the number of detected peaks
were used to qualitatively measure the specific advantage of the HD
analysis in comparison to the approach, where individual experiments
of the set are processed separately.

Here, we give a short description of the TA assignment procedure.
The detailed description of the procedure for the data collection and
analysis can be found in the Supporting Information. The data set
accumulated by the end of each TA step is subjected to the HD MDD
decomposition (eq 2). Gradually, a more refined MDD model of the
HD spectrum is constructed as more data points are measured. For each
amide group, the processing gives a list of hyperdimensional compo-
nents, which are composed of the 1D shapes. The time domain shapes
are then Fourier transformed, and the positions of the signals are
determined usingnmrPipe software.52 The chemical shift values
obtained for each amide represent an unassigned spin system. Sequence-
specific assignments for backbone atoms are obtained automatically

from the list of spin systems using the program AutoAssign.53 This
program is invoked for each step using a batch macro with the adapted
execution schedule. The accuracy and precision of the assignment
obtained at each step are quantified using the routinecompare_bmrb.pl
from “Assignment Validation Suite”.54 The assignments of the last step
were submitted to the BMRB database. (Data deposition note: the
backbone assignments for ubiquitin andúcyt are deposited as BMRB
entries 15410 and 15409, respectively; to be released upon publishing
of the paper.)

Results and Discussion

In this work, the concept of HD spectroscopy, which was
originally introduced for radial sampling,29 is demonstrated in
combination with NLS, MDD signal processing, and targeted
acquisition. Experimental results and theoretical considerations
show that the HD approach allows significant reduction of
measurement time compared to non-HD analysis. In the TA
procedure, we construct gradually improved models of the high-
resolution HD spectra. The signals in the spectra are described
completely by the sets of the HD components grouped by amide
frequencies (Figure 2a-i). While illustrating the method’s
effectiveness and robustness, we obtained complete backbone
resonance assignments for the two proteins in a very short time
(Figure 5). The two systems represent low and high spectral
complexity. Ubiquitin (8 kDa) is a small globular protein. The
cytoplasmic domain of the T cell receptorúcyt (13 kDa)
represents a naturally disordered protein.45-49

Interleaved Recording of HD Spectra and Real-Time
Signal Detection.A standard triple-resonance set (Figure 1) of
short experiments is acquired using nonlinear sampling sched-
ules and analyzed in equal steps. A varying number of transients
and time increments define time allocations for the individual
experiments (Table S1 in the Supporting Information). These
are chosen to roughly compensate for the differences in the
sensitivities of the spectra. Ideally, a comparable percentage of
signals is detected in the spectra at all steps to ensure balanced
input to the automated assignment program. For example, the
least sensitive HN(ca)CO experiment was recorded with 4 times
more transients than other experiments in theúcyt set. Figure 2
exemplifies a HD component (R72 of ubiquitin, step 30), which
is the direct output of the MDD calculations. The sets of
components for all amides constitute complete representations
of the hyperspectra. Any correlations between the spins or even
the full 9D (10D) hyperspectrum for ubiquitin (úcyt) can be
reconstructed from the components. As an example, a 2D
reconstruction of the CA(i)-CA(i - 1) projection for ubiquitin
is given in Figure 2j. The multidimensional reconstructions,
however, were unnecessary for our analysis, since the signals
were easily and reliably detected in the 1D shapes. Furthermore,
MDD efficiently deconvolutes peaks belonging to different
components.39 Detection of signals in the reconstructednD
projections is more difficult, because signals from different
components may overlap.

The first seven (eight) shapes for ubiquitin (úcyt) were obtained
for each amide group at every step of the TA procedure. The
peaks obtained in these shapes were used for the automated
assignments. The two last NOESY and TOCSY H(cco)NH

(52) Delaglio, F.; Grzesiek, S.; Vuister, G. W.; Zhu, G.; Pfeifer, J.; Bax, A.J.
Biomol. NMR1995, 6 (3), 277-293.

(53) Moseley, H. N.; Monleon, D.; Montelione, G. T.Methods Enzymol.2001,
339, 91-108.

(54) Moseley, H. N.; Sahota, G.; Montelione, G. T.J. Biomol. NMR2004, 28
(4), 341-355.

Figure 3. Numbers of peaks detected using the HD approach (solid lines)
as a function of acquisition time (step) for (a) ubiquitin and (b)úcyt. The
color codes are as follows: (yellow) HN(co)CA; (pink) CBCA(co)NH;
(magenta) iHNCA; (blue) iHN(ca)CB; and (green) HN(ca)CO. The dashed
lines in panel (b) give the number of signals obtained from the same data
but without the HD approach, i.e., using MDD reconstructions and peak-
picking of individual 3Ds.
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shapes in Figure 2h and i illustrate the perspective of the HD
approach for protein side chain assignments and structure
determination. These two shapes were not used for the backbone
assignment and were obtained using experiments recorded after
the backbone set.

Figure 3a and b shows the direct (unassigned) results of the
HD processing and peak-picking in the 1D shapes. The peak
count curves are sigmoid functions of the acquisition time.
Initially, a few of the strongest peaks appear, followed by
detection of bulk peaks with average intensity, trailed by a few
weak peaks. For ubiquitin, the high sensitivity and relatively
small number of amide groups allow for detection of nearly all
the expected correlations in the set of four experiments in∼1
h. For theúcyt spectra, it takes 1 order of magnitude longer to
reach the plateau of the peak counts. More time is needed for
úcyt due to lower sample concentration, higher molecular weight,
larger number of experiments in the set, and more severe signal
overlap for the disordered protein. The number of detected peaks

is a complex function of sensitivity and the ratio of the number
of collected data points to the number of the MDD model
parameters. We previously showed50 that peak detection could
be limited both by low sensitivity and by underdetermination
of the MDD model. The 1D shapes are obtained at all steps,
but with few measured data points the shapes contain too much
noise and only few, if any, peaks of acceptable quality are
detected. The latter situation may happen at the very first TA
steps.

Saving Measurement Time.Experimentally observed time
saving factorsφ (eq 3) for individual experiments recorded for
the two protein systems are presented in Table 1. The approach
makes it feasible to use a small fraction of measurements. For
example, 90% of the peaks in the HN(co)CA spectrum ofúcyt

are detected with only 0.2% of the full uniformly sampled
matrix. On average, the factorφ is around 1% at the level of
90% peak detection. This translates into a reduction of the total
measurement times from 54 and 546 h to 0.4 and 5.2 h for
ubiquitin andúcyt, respectively. The latter times correspond to
time allocations for the experiment set, when each experiment
is stopped separately after 90% of peaks are detected (more
details on peak monitoring are below). Note that we recorded
and analyzed the HNCO spectra prior to the accumulation of
the sets. Along with other necessary procedures such as
temperature setup and shimming, the HNCO can be considered
as a prerequisite in our procedure. Alternatively, it can be rapidly
recorded50 at the first stage, which would add the time equivalent
of one or two steps of the TA procedure. Good correlation
between the experimental and theoreticalφ values (Table 1)
indicates general applicability of eq 3 as well as the validity of
the assumption of the sampling limiting regime used in the
derivation of the equation. Note, however, that sensitivity in
theúcyt experiments was enhanced by recording two to 8 times
more transients in theúcyt spectra than in the corresponding
ubiquitin spectra.

Figure 4. Content and quality of the backbone chemical shift assignment tables for ubiquitin (left) andúcyt (right) as a function of the targeted acquisition
step. The number of matching shifts (or sequential connectivities) for each residue (panels a and b) is indicated by colored dashes (red, 1; blue, 2; green, 3).
The precision (c and d) andaccuracy(e and f) of the assignment are defined as maximum absolute difference of the chemical shifts at current versus
previous and last TA steps, respectively. A gray dash indicates that the assignment for one of the atoms for the residue is missing in one of the tables; ablack
dash indicates that at least one of the chemical shift differences exceeds a threshold value (0.1 ppm for13C and15N or 0.01 ppm for1H).

Figure 5. Progress of backbone assignments for ubiquitin (left) andúcyt

(right). The percentages of assigned backbone atoms (H, cyan; N, green;
CO, yellow; CA, red; CB, blue), relative to the totals in the amino acid
sequences of the proteins, are given as a function of experimental time.
The statistics are derived from the assignment tables (in BMRB 3.0 format)
on each step using the proceduremissing_shifts.plfrom “Assignment
Validation Suite”.
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The net speedup of NMR measurements is the result of
several synergetic contributions: NLS, TA, R-MDD, and HD
analysis. While the former three methods were thoroughly
addressed in our previous publications, it is instructive to
highlight the specific contribution of the HD approach, which
is the main focus of this work. Figure 3b shows that, to detect
the same number of peaks, the HD analysis allows∼4 times
less measurements in comparison to processing and analyzing
of the same spectral data individually. Although, the procedures
of peak identification (peak-picking) in 1D shapes and 3D
spectra are inherently different, the improvements judged by
comparison of the curve timings in Figure 3 are in line with
our previous results. While theφ values of 1% and less are
demonstrated in this work, those obtained previously for
individual spectra were larger than 5%. The time saving factors
of around 4 for the HD analysis are also predicted from the
theoretical consideration (see the Supporting Information). Time
saving in obtaining the resulting peak lists reflects clear
improvement of the spectra due to the use of HD analysis. To
the best of our knowledge, we show the shortest total measure-
ment time for a protein backbone assignment data set, although
a close result has been recently reported for ubiquitin.30 Notably,
the HD approach was used in both cases, indicating a significant
added value of this novel type of analysis.

The demonstrated short measurement time can be appealing
for HTP applications, such as structural genomics. In this work,
however, it serves as a benchmark value and quantitative
measure to justify the merit of the HD approach in general and,
notably, characterizes our particular implementation of it. When
comparing time savings of different fast techniques, it is
important to look at the total measurement time needed to detect
all required signals and to take into account the dimensionality
of the experiments used. Generally, the higher the spectrum
dimensionality, the longer the full experiment will be, and,
consequently, the smaller fraction of measurement will be
needed. In this work, the time saving is obtained for a set of
conventional triple-resonance 3D experiments and thus can be
directly compared with traditional analysis.

Computation. The original MDD algorithm is computation-
ally demanding. However, the HD MDD procedure with fixed
HN and N shapes takes considerably less time. For example, at
step 30 of the TA schedule, the computations for the HN(ca)-
CO spectrum ofúcyt converged in 0.5 min (118 iterations), which
should be compared with 40 min of the same calculations (2560
iterations) without the shape fixation. Although all calculations
are conducted using a single modern workstation with two Dual
Core CPUs, the calculation times per step are always smaller
than the corresponding measurement times. Table 1 gives
separate computational times for the MDD calculations, pro-
cessing and analysis of shapes, and assignments. Note that most
of the time is spent on shape processing and peak-picking, using
routines fromnmrPipe. Thus, we show that, with a modern
computer and the HD MDD algorithm used in the current real-
time implementation, the calculations do not represent a time-
limiting step.

Monitoring Sequential Connectivities and Obtaining Reso-
nance Assignments.The process of automated resonance
assignment has been evolving for several years.6,55-58 Here, we
use the external program AutoAssign53 to perform backbone
assignment for the two proteins. First, we identify sequential

connectivities for individual amide groups (Figure 4a and b) of
the two protein systems as a function of acquisition step (see
the Experimental section). Two connectivities through CR and
Câ frequencies are rapidly obtained for the majority of ubiquitin
amides. Similarly, up to three contacts via CR, Câ, and CO signals
are established forúcyt. A lack of sequential contacts for several
residues is due to prolines (3 for ubiquitin, 6 forúcyt) and
glycines (6 for ubiquitin, 13 forúcyt), which do not have either
HN or Câ atoms, respectively. Second, AutoAssign uses the
connectivities on each step to produce resulting assignments
(Figure 5). After the backbone assignment curves reach a plateau
close to 100%, the acquisition is continued to verify the stability
of the established solution. The progress of assignment clearly
correlates with the increases of the numbers of detected peaks
(Figure 3). Thus, the main and obvious factor that improves
the assignment with additional measurements is the number of
detected peaks. More data also improve the accuracy of the
signal positions (Figure S1 in the Supporting Information) by
reducing the noise level in the 1D shapes used for peak
detection.

During progression of the real-time procedure, the extrapola-
tion of the assignment curves permits estimation of the
completion time. For example, 50% (95%) peak assignment
levels are achieved roughly at 0.5 (1.0) h for ubiquitin and 3
(10) h for úcyt. Thus, we can generalize that the time taken to
obtain the first half multiplied by a factor of 2-3 can give an
approximate time needed to assign 95% of the peaks. Note that
the above measurement time estimates are on the upper side
for the suggested approach, since a number of obvious
optimizations were deliberately avoided in this work. This is
done for simplicity of presentation and to highlight the value
of the HD approach in combination with NLS and MDD
analysis. In particular, the time allocation for several of the most
sensitive experiments in the set can by reduced (Table 1). This
allows shortening of the total spectrometer time by an additional
20-30%. Moreover, we did not use time optimized BEST
experiments,12 which would have additionally reduced the
measurement time at least by half.

Extra time allocation to detect/assign any of the remaining
5% weak signals depends largely on their sensitivity. Some
signals could be very weak and thus require too much recording
time. Detection of the13C correlations and their correct
assignments is achieved for most spin systems after step 10
(Figure 4). Longer spectra acquisition forúcyt, up to step 24,
was required for assignment of several weak HN(ca)CO
correlations. The percentages of the assigned HN, N, CO, CA,
and CB correlations relative to the corresponding totals in the
amino acid sequences (Figure 5) are close to 100% at about 1
and 10 h for ubiquitin andúcyt, that is, with the exception of
correlations that were not observed (Table 1).

Assignment Accuracy and Precision.In the NLS experi-
ment, additional measurements increase the number of observed
signals and improve the precision of signal positions and
intensities. The effect is similar to that of conventional experi-
ments, where the signal-to-noise ratio gradually increases with

(55) Hyberts, S. G.; Wagner, G.J. Biomol. NMR2003, 26 (4), 335-344.
(56) Malmodin, D.; Papavoine, C. H.; Billeter, M.J. Biomol. NMR2003, 27

(1), 69-79.
(57) Baran, M. C.; Huang, Y. J.; Moseley, H. N.; Montelione, G. T.Chem.

ReV. 2004, 104 (8), 3541-3556.
(58) Masse, J. E.; Keller, R.J. Magn. Reson.2005, 174 (1), 133-51.
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more transients. Besides, an increasing number of measurements
can be thought of as an implementation of the jackknife/
bootstrap statistical analysis,59 which allows estimating the
precision of parameters. We define the precision of the
assignments as the difference between the chemical shifts
obtained at two consecutive acquisition steps. In a realistic real-
time procedure, the correct values of the chemical shifts are
not knowna priori, thus making it impossible to estimate the
accuracy. It is instructive, however, to see the similarity of the
patterns of precision (Figure 4c and d) and accuracy (Figure 4e
and f). The reference assignment table was manually checked
and verified against published assignments for ubiquitin44 and
úcyt.49 For the individual residues of the two protein systems,
the errors in the chemical shifts corresponding to precision and
accuracy drop below the cutoffs (0.1 ppm for any13C) at about
the same acquisition step. It is worth noting that the assignment
achieved at the intermediate steps is mostly correct and is revised
at the following stages only for a few residues (black dashes,
Figure 4c-f).

The assignment procedure using the software AutoAssign is
computationally fast (Table 1). The positive results of the
automated analysis are due to the reduction of combinatorial
complexity in the HD MDD approach. Namely, the protocol
produces peaks already grouped into spin systems defined by
the amide groups. Furthermore, the NLS spectra can be recorded
with maximal resolution limited only by the relaxation properties
of the spin coherences and the duration of the constant-time
evolution periods in the pulse sequences. High-resolution
translates into low-signal overlap and high precision of the
chemical shift values, which provide accurate connectivities
between the spin systems. Theúcyt spectra (Table 1) were
acquired with up to 200 and 224 complex data points in the
13C and15N dimensions, respectively. The automated analysis
of signals is further simplified by using the intraresidual versions
of the backbone experiments that produce a single peak for each
amide.60 In such experiments, the accuracy of identification of
a single peak is not compromised by an occasional overlap,
which can be heavy for CA signals, for example, in HNCACB
or HNCA experiments. It certainly helps if all experiments in
a set are optimized for detection of a single amide peak; how-
ever, HD spectroscopy does not set such a requirement, and
the selection of experiments for a set can be based on their
higher sensitivity or on any other criteria. Finally, deconvolution
of the overlapped signals in the HD MDD protocol and the high
digital resolution affordable for the 1D shapes increase the
reliability of frequency estimation compared to regular 3D peak-
picking.

The Intrinsically Unstructured Protein and the Problem
of Overlap. The heavy overlap exacerbated by homologous
sequence repeats is not entirely unexpected for an unfolded
protein with a small content of residual secondary structure.
This is the reason why we selected such a protein system for
testing the HD approach with 3D data. Most chemical shifts of
úcyt are random coil values. There is a large number of residues
having close values of CR and Câ chemical shifts, in particular,
the cluster of 14 arginines, 8 lysines, 8 glutamic acids, and 9
glutamines. The consequence is that many amino acid segments
have similar chemical shift patterns. The proceduretyping_de-

generacy.plfrom “Assignment Validation Suite”,54 which reports
statistics on degenerate or similar segments in a protein amino
acid sequence, found degeneracy in 55 pairs of four, 27 pairs
of five, 7 pairs of six, and 1 pair of eight residues. The latter
pair of stretches starts at G30 and G50. Due to the high
degeneracy of CR and Câ chemical shifts forúcyt, additional
connectivities through CO were essential and sufficient for the
sequential disambiguation.

As it is stated in the theory, we could expect wrong
correlations in the HD spectra in the case of severe overlap in
the amide dimensions. With the used algorithm of the HD
analysis, this effect could reveal itself as an “exchange” of 1D
carbon shapes between the overlapped components (or spin
systems). With the notations from the Theory section, it might
happen that, instead of the correct correlations A-C and A′-C′,
the wrong ones A-C′ and A′-C are observed in the HD spectrum.
The effect is noise dependent and would reveal itself as changes
in the C-frequencies in the individual HD components from one
TA step to another.úcyt has a 4.25 times more crowded1H
dimension than the average in therefDBprotein database. Thus,
the HN chemical shift dispersion of 0.16 ppm forúcyt corresponds
to the overlap complexity of a 50 kDa globular protein. In the
1H-15N amide correlation spectrum ofúcyt, the 2D distance (1H
ppm scale) between a peak and its closest neighbor ranged from
0.005 ppm for two residue pairs (Q22, D102 and G60, G81) to
0.42 ppm with the median value of 0.03 ppm. Although, for
∼10% of the amides, the distances between the peaks were close
and, for some experiments, below the physical spectral resolu-
tion, we did not observe a correlation between the number of
changes in the peak positions and the degree of overlap (Figure
S1 in the Supporting Information). Most of the peaks were
detected, and their positions became stable by step 10 of the
TA schedule, although the final solution is reached in step 21.
The overlap did not pose a problem in our analysis, because
NLS enabled high spectral resolution in all the indirect
dimensions and MDD provided efficient peak deconvolution.

If peaks overlap severely in all dimensions of the 3D HNCO
spectrum, they are indistinguishable and can be effectively
treated as one component. However, there were no 3D overlaps
for any of the components for the high-resolution HNCO.
Consequently, a fixed number of fully separated components
identified in the 3D HNCO spectra is used for the 3D
deconvolutions in all other experiments. Knowing the number
of components and their H-N shapes considerably facilitates
3D decompositions in the remaining spectra. Thus, 3D-based
HD analysis is largely unaffected by H-N overlaps. The TA
procedure provides an internal statistical monitor for potentially
problematic HD components. These are revealed directly as
changes in the peak lists from one step to another (Figure S1
in the Supporting Information) and as changes in the assignment
tables (Figure 4). In this demonstration, even for the crowded
spectra ofúcyt, information about amide line shapes resulted in
efficient deconvolution of the overlaps and unambiguous binding
of signals into spin systems. For large systems with naturally
broad lines and heavy overlap, we envisage the use of a suite
of 4D experiments,36 where components are identified in four
dimensions and bound via three dimensions.

Conclusion

The dramatic speedup of NMR measurements and analysis
demonstrated here is the result of several synergetic contribu-

(59) Efron, B.The jackknife, the bootstrap, and other resampling plans; Society
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(60) Permi, P.J. Biomol. NMR2002, 23 (3), 201-209.
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tions. NLS avoids large redundancy in the measurements while
providing adequate resolution and preserving or improving
sensitivity per unit of instrument time. Targeted acquisition
allows for real-time optimization of time allocation for individual
experiments in the data set. The HD analysis finds common
information for the signals in different spectra, which allows
further reduction of experimental data needed for the analysis.
The HD MDD analysis provides deconvolution of overlapped
signals and the possibility to work with the 1D representations
of multidimensional spectra. This dramatically simplifies iden-
tification of the signals, which is important for the success of
automated spectra analysis.

The HD approach for efficient handling of raw experimental
data fits well into the context of recent advances in computa-
tional techniques for automated signal assignments,56,57 rapid
protein structure determination, and macromolecular complex
characterization.61-66 Together, the methods should enable one
to determine spatial structures and characterize protein dynamics

and interactions with higher accuracy and much more rapidly
than is possible at present, thereby enhancing the value of NMR
spectroscopy in HTP applications such as structural genomics67

and in conventional “hypothesis driven” structural biology
projects.
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